Correction: Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis

نویسندگان

  • Di Wen
  • Crisalejandra Rivera-Perez
  • Mohamed Abdou
  • Qiangqiang Jia
  • Qianyu He
  • Xi Liu
  • Ola Zyaan
  • Jingjing Xu
  • William G. Bendena
  • Stephen S. Tobe
  • Fernando G. Noriega
  • Subba R. Palli
  • Jian Wang
  • Sheng Li
چکیده

Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in lethality; it decreased biosynthesis of JHB3, but MF biosynthesis was not affected. RNAi-mediated reduction of 3-hydroxy-3-methylglutaryl CoA reductase (hmgcr) expression in the CA decreased biosynthesis and titers of the three sesquiterpenoids, resulting in partial lethality. Reducing hmgcr expression in the CA of the jhamt mutant further decreased MF titer to a very low level, and caused complete lethality. JH III, JHB3, and MF function through Met and Gce, the two JH receptors, and induce expression of Kr-h1, a JH primary-response gene. As well, a portion of MF is converted to JHB3 in the hemolymph or peripheral tissues. Topical application of JHB3, JH III, or MF precluded lethality in JH-deficient animals, but not in the Met gce double mutant. Taken together, these experiments show that MF is produced by the larval CA and released into the hemolymph, from where it exerts its anti-metamorphic effects indirectly after conversion to JHB3, as well as acting as a hormone itself through the two JH receptors, Met and Gce.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methyl Farnesoate Plays a Dual Role in Regulating <em>Drosophila</em> Metamorphosis

Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in...

متن کامل

Methyl Farnesoate Plays a Dual Role in Regulating Drosophila Metamorphosis

Corpus allatum (CA) ablation results in juvenile hormone (JH) deficiency and pupal lethality in Drosophila. The fly CA produces and releases three sesquiterpenoid hormones: JH III bisepoxide (JHB3), JH III, and methyl farnesoate (MF). In the whole body extracts, MF is the most abundant sesquiterpenoid, followed by JHB3 and JH III. Knockout of JH acid methyl transferase (jhamt) did not result in...

متن کامل

Ligand binding pocket function of Drosophila USP is necessary for metamorphosis.

The widely accepted paradigm that epoxidized methyl farnesoates ("juvenile hormones," JHs) are the principal sesquiterpenoid hormones regulating insect metamorphosis was assessed in Drosophila melanogaster. GC-MS analysis of circulating methyl farnesoids during the mid to late 3rd instar showed that methyl farnesoate is predominant over methyl epoxyfarnesoate (=JH III). The circulating concentr...

متن کامل

Drosophila CG10527 mutants are resistant to juvenile hormone and its analog methoprene.

Juvenile hormone (JH) is critical for development, metamorphosis, and reproduction in insects. While the physiological importance of JH has been appreciated for decades, its biosynthetic pathway and molecular action remain poorly understood. Drosophila CG10527 encodes a protein with high homology to crustacean farnesoic acid methyltransferase (FAMeT) that converts farnesoic acid to methyl farne...

متن کامل

Identification of methyl farnesoate in the cypris larva of the barnacle, Balanus amphitrite, and its role as a juvenile hormone.

Previous investigations have shown that insect juvenile hormone (JH) and its analogues induce precocious metamorphosis of barnacle cypris larvae. In the present study, methyl farnesoate (MF; structurally identical to JH III, except for the absence of an epoxide group) has been shown to have a concentration-dependent effect on the development of cyprids of the barnacle Balanus amphitrite. Analys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2015